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We experimentally investigate the optical cavity for various coupled regimes with an injected squeezed
vacuum state. We measure the quantum fluctuation spectra of the reflected field of an optical cavity using
the homodyne detection and present the spectral dependence on the absorption and dispersion properties
of the cavity in the under-coupled, critically-coupled, and over-coupled regimes. The spectra lineshape is
phase sensitive with the phase shift induced by the cavity. Moreover, we find that the over-coupled optical
cavity has obvious advantage in the manipulation of quantum fluctuation.
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The optical cavity has a wide range of applications in sci-
entific and commercial instruments, such as laser, spec-
troscopy, frequency stabilization, etc. An important
property of optical cavity is its dispersive and absorp-
tive response. A cavity can be over-coupled, critically-
coupled (impedance matched)[1], or under-coupled. The
phase of the field reflected from the cavity is also im-
portant for frequency lock acquisition[2−4] and opti-
cal pulse transmission. More specifically, on-resonance,
over-coupled cavity results in slow light, whereas under-
coupled cavity results in fast light, and critically-coupled
cavity results in zero reflection[5−7].

The quantum noise of light can be manipulated by em-
ploying the optical cavity. Quantum sidebands of bright
light beam are modified by the optical cavity, in which
original quantum phase fluctuations of the incident bright
beam are converted into amplitude fluctuations[3,8−13]

(note that only amplitude fluctuations of bright light
beam can be detected directly by the photodiode). The
tomography of quantum states of bright light beam can
be performed using this method[10,11]. The quantum
fluctuation spectra of the subharmonic reflected field of
a degenerate optical parametric amplifier (OPA) inside
an optical cavity have been studied theoretically[14] and
experimentally[15], which is driven by the squeezed vac-
uum state. The quantum fluctuation spectra for an opti-
cal empty cavity and the two-coupled cavities with an in-
jected squeezed vacuum state have also been investigated
in Refs. [15] and [16]. In these works, only over-coupled
cavity is considered since its phase response undergoes a
2π phase shift. In this letter, we experimentally study the
quantum fluctuation spectra of the reflected field from
an optical cavity with various coupled regimes when in-
jecting the squeezed vacuum state systematically. The
squeezed quadrature components of the reflected beam
of the optical cavity are measured by choosing the phase
of the local beam relative to the input squeezed vacuum
state. We demonstrate how the absorption and disper-
sion properties of the cavity determine the quantum fluc-
tuation spectra of the reflected field. To the best of our
knowledge, this work is completely different from the

most previous studies for bright light injecting an op-
tical cavity[3,8−13].

An optical cavity is assumed to be a standing wave cav-
ity with the length L and comprises of input mirror M1

and back mirror M2. The round trip time of the cavity is
τ = 2L/c. The light resonates in the optical cavity and
reflects from M1. The motion equation for the intracavity
light field is expressed as

τ
dâ

dt
= −i∆τâ − γâ +

√

2γa
inâin +

√

2ρâv, (1)

where γ is the total damping of the cavity expressed by
γ = γa

in+ρ, γa
in is the damping associated with input mir-

ror M1, ρ is the decay rate for internal losses, ∆ is the
detuning between the cavity-resonance frequency and the
seed light frequency with ∆ = 4π(L−Lres)/τλ = νc−νL,
where λ is the wavelength of the light, Lres is the cav-
ity length at resonance, νc is cavity resonant frequency,
and νL is the frequency of injecting light. Furthermore,
âv is the vacuum noise which is coupled into the cavity
through internal losses.

First, we consider that the bright light field is in-
jected into the optical cavity, which may be expressed
as âin = ain + δâin, where ain is the mean field of the
bright light, and δâin is quantum fluctuation. Without
loss of generality, we assume that the phase of the in-
jected bright light field is zero, i.e, ain is real and positive.
The steady state solution corresponding to dâ/dt = 0 in
Eq. (1) is given by

0 = −i∆τa − γa +
√

2γa
inain. (2)

Combining the boundary condition ao = ain −
√

2γa
ina,

we could get the steady state solutions of the reflected
field of the optical cavity as

ao = −2γin − γ − i∆τ

γ + i∆τ
ain. (3)

The mean values of the reflected field ao may be ex-
pressed as ao = |ao| exp(iθ). The amplitude |ao| and
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phase θ of the reflected field with respect to the detun-
ing ∆ may be plotted by Eq. (3) as shown in Fig. 1.
Note that Eq. (3) gives the lineshape of amplitude and
phase shift only near zero detuning within one free spec-
tral range (FSR). However, the method in Refs. [5–7]
may gives the lineshape for any frequency detuning (for
example, the periodic structure when the frequency range
exceeds one FSR). Figures 1(a) and (d) show the line-
shape of amplitude and phase shift with respect to the
detuning ∆ for the under-coupled cavity (γa

in < ρ). Near
resonance, the amplitude presents the loss and the phase
undergoes a rapid variation with respect to the detuning.
For an undercoupled cavity, the phase is a dispersion-
shaped response that never exceeds ±π/2. The deriva-
tive dθ/d∆ of the phase is analogous to group refractive
indices. According to the lineshape of phase shift with
respect to the detuning, the under-coupled cavity results
in fast light at resonance and may generate slow light
at out of resonance. When the optical cavity becomes a
critically-coupled cavity (γa

in = ρ, also called impedance-
matched cavity), the resulting amplitude and phase shift
curves are shown in Figs. 1(b) and (e). The amplitude
of the reflected field is zero at resonance. When γa

in > ρ,
the cavity is overcoupled. The phase responde undergoes
a 2π phase shift when the cavity goes through resonance,
as shown in Fig. 1(f), which corresponds to slow light.
When the cavity is changed from overcoupled regime (un-
dercoupled) to critically-coupled configuration, the group
velocity becomes increasingly slower (faster).

Now, let us consider the situation only with the input
quantum field (âin = δâin, and ain = 0). The conjugate
of Eq. (3) can be obtained as

τ
dâ†

dt
= i∆τâ† − γâ† +

√

2γa
inâ

†
in +

√

2ρâ†
v. (4)

Since the spectra of the quadrature variances of the

Fig. 1. (Color online). Lineshape of amplitude and phase of
the reflected coherent light from the cavity as a function of the
cavity detuning. (a) and (d) with the under-coupled optical
cavity (γa

in = 0.05 and ρ = 0.1); (b) and (e) with critically-
coupled optical cavity (γa

in = 0.05 and ρ = 0.05); (c) and (f)
with over-coupled optical cavity (γa

in = 0.05 and ρ = 0.01).

reflection field are measured and analyzed by homodyne
detection, we make the Fourier transformation δâ(ω) =

1√
2π

∫

dtδâ(t)e−iωt. We could obtain

δâ(ω) =
2
√

γa
inδâin(ω) + 2

√
ρδâv(ω)

γ + i(ω + ∆)τ
, (5)

δâ†(−ω) =
2
√

γa
inδâ

†
in(−ω) + 2

√
ρδâ†

v(−ω)

γ + i(ω − ∆)τ
. (6)

According to the boundary condition δâo = δâin −
√

2γa
inδâin, the amplitude and phase quadratures of the

reflected field are expressed by

δX̂a = δâ(ω) + δâ†(−ω), (7)

δŶa = −i[δâ(ω) + δâ†(−ω)]. (8)

We can get the amplitude and phase quadratures of the
reflected field as

δX̂o = {[2γa
inγ − γ2 − (∆2 − ω2)τ2 + 2iωτ(γa

in − γ)]δX̂in

+ 2γa
in∆τδŶin + 2

√

γa
inρ(γ + iωτ)δX̂v

− 2
√

γa
inρ∆τδX̂v}/[γ2 + (∆2 − ω2)τ2 + 2iωτγ],

(9)

δŶo = {[2γa
inγ − γ2 − (∆2 − ω2)τ2 + 2iωτ(γa

in − γ)]δŶin

− 2γa
in∆τδX̂in + 2

√

γa
inρ(γ + iωτ)δŶv

+ 2
√

γa
inρ∆τδŶv}/[γ2 + (∆2 − ω2)τ2 + 2iωτγ].

(10)

Thus, we can get the fluctuation variances of the ampli-
tude and phase quadratures of the reflected field from
the optical cavity

〈δ2X̂o〉 = [(2γa
inγ − γ2 − ∆2τ2 + ω2τ2)2〈δ2X̂in〉

+ 4ω2τ2(γa
in − γ)2〈δ2X̂in〉 + 4(γa

in∆τ)2〈δ2Ŷin〉
+ 4γa

inρ(γ2 + ω2τ2)〈δ2X̂v〉 + 4γa
inρ∆2τ2〈δ2Ŷv〉]

/[(γ2 + ∆2τ2 − ω2τ2)2 + 4ω2τ2γ2], (11)

〈δ2Ŷo〉 = [(2γa
in∆τ)2〈δ2Xin〉 + 4γa

inρ∆2τ2〈δ2X̂v〉
+ (2γa

inγ − γ2 − ∆2τ2 + ω2τ2)2〈δ2Ŷin〉
+ 4ω2τ2(γa

in − γ)2〈δ2Ŷin〉
+ 4γa

inρ(γ2 + ω2τ2)〈δ2Ŷv〉]
/[(γ2 + ∆2τ2 − ω2τ2)2 + 4ω2τ2γ2]. (12)

The experimental setup is shown in Fig. 2. The light
source is a diode-pumped intracavity frequency-doubled
continuous-wave ring Nd:YVO4/KTP laser, which simul-
taneously provides about 200 mW of the green light at
532 nm and 50 mW of the fundamental light at 1 064 nm.
The green light is injected into the optical parametric os-
cillator (OPO) as a pump beam. The fundamental light,
after tranforming into cleaning mode by passing through
the mode clean cavity, is divided into two parts: one part
is used as local oscillator (LO) for the balanced homodyne
detector, and another beam is used as the signal beam to
be injected into the OPO. The output fundamental beam
for the OPO is then injected into the optical empty cav-
ity. This signal beam is mainly utilized for alignment of
OPO and the optical empty cavity, because the squeezed
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Fig. 2. (Color online) Schematic of the experimental setup
for the manipulation of a squeezed vacuum field by an op-
tical empty cavity. A squeezed vacuum state is generated
from the subthreshold OPO and then injected into the op-
tical empty cavity. DC: dichroic mirror; T-C: temperature
controller; PBS: polarizing beam splitter; OI: optical isolator;
D1 and D2: detectors; BHD: balance homodyne detection.

vacuum state has very low numbers of photon and is very
difficult to align. The OPO cavity and the optical empty
cavity have the same structures, each of which is com-
posed of two mirrors with the same radius of curvature
of 30 mm. Inside the OPO cavity, there is a 12-mm-long
periodically poled KTP (PPKTP) crystal mounted in a
copper block, which is connected with temperature con-
trol unit that could control the temperature of crystal at
the millidegree Kelvin level around the operation tem-
perature (31.3 ◦C) for optimizing the optical parametric
down-conversion process at the chosen wavelength. For
the OPO cavity, mirror M1 has a reflectivity of 88.7% at
1 064 nm and is a high reflector (> 99%) at 532 nm as well
as the reflectivity of mirror M2 99.5% at 1 064 nm and
30% at 532 nm. The pump light is injected into the OPO
through mirror M2, and the output of squeezed vacuum
light generated from the OPO is at mirror M1. For the
optical empty cavity, input mirror M1 has a reflectivity
of 95.8% at 1 064 nm, but the reflectivity of mirror M2 is
variational. The two mirrors are separated by ∼59 mm.
Mirror M2 is mounted on a PZT2 in order to adjust the
length of cavity. According to the reflectivity of M2, we
can classify the optical empty cavity into under-coupled
(90%), critically-coupled (95%), or over-coupled cavity
(99.2%).

When blocking the signal fundamental light and open-
ing the pump light for the OPO, the output squeezed
vacuum light is injected into the optical empty cavity at
mirror M1 through the optical isolator, which could sep-
arate the reflected beam from the optical empty cavity.
The reflected beam is combined with the LO field at a
50/50 beam splitter, and then detected by the balanced
homodyne detector (BHD) system. The relative phase
between the LO field and the squeezed vacuum field
reflected from M1 of the optical empty cavity is adjusted
by the PZT3. The interference efficiency of homodyne
detection system may reach 94.5% in the experiment
by optimizing the mode-matching between LO and the
reflected signal light. The squeezed vacuum light at the
sideband frequency of 2.5 MHz is analyzed and recorded
by RF spectrum analyzer.

First, when we block mirror M2 of the optical empty
cavity and choose the relative phase between the LO

field and the squeezed vacuum field, we could obtain
the quantum fluctuations of the OPO without the in-
fluence of the optical empty cavity. As shown in Fig.
3(a), the spectrum (blue curve) is below the shot-noise
limit (SNL) (black curve) when we fix the relative phase
between LO and the reflected signal light to be φ = 0,
which corresponds to measuring the squeezing compo-
nent. Since φ = π/2, as we can see in Fig. 3(b), the
spectrum (blue curve) of the antisqueezing component
is far above the SNL. The squeezing with 1.7 dB and
antisqueezing component with 6 dB are detected by the
BHD system.

Now, let us turn on the optical empty cavity and scan
its length by PZT2. Choosing the reflectivity of M2 of
the optical empty cavity, we can obtain the quantum
fluctuation of the reflected field of an under-coupled
cavity, a critically-coupled cavity, and an over-coupled
cavity.

Case 1. We first study the spectra of the reflected
squeezed vacuum field from the under-coupled optical
cavity with respect to the cavity detuning, as shown in
Figs. 3(c) and (d). Fixing the relative phase between LO
and the reflected signal light to be φ = 0, the squeezing
quadrature of the reflected field is measured (Fig. 3(c)).
Near resonance, the measured quadrature component,
becomes δX̂θ = cos θX̂ + sin θŶ , where θ is the phase

Fig. 3. (Color online) Reflection spectra of the squeezed and
antisqueezed components from the optical cavity injected with
the squeezed vacuum field as a function of the cavity de-
tuning. (a) and (b) Without the optical cavity; (c) and (d)
with the under-coupled optical cavity; (e) and (f) with the
critically-coupled optical cavity; (g) and (h) with the over-
coupled optical cavity. The blue curves are the experimental
results, and the red curves are the theoretical calculations.
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shift of the cavity (thus, the antisqueezing component can
be measured at the detuning with θ = π/2 induced by the
cavity, which is above the SNL). Because of the absorp-
tion and dispersion properties of the optical cavity, the
reflected spectrum of squeezed quadrature presents M-
type profile. At zero detuning, the degree of the squeez-
ing can still be slightly measured due to zero phase shift
induced by the cavity, however it is decreased due to the
cavity loss. Thus, the spectrum at the center is below
the SNL, although, the squeezing is smaller than that at
far off resonance. In comparision, the squeezing at far off
resonance corresponds to nearly prefect reflection. When
choosing the relative phase between the LO and squeezed
vacuum field to be φ = π/2, the antisqueezing quadra-
ture component of the reflected field is shown in Fig.
3(d). The reflected spectrum of antisqueezed quadrature
presents a dip at the center.

Case 2. Let us investigate the situation with the op-
tical empty cavity near critically-coupled configuration.
When we fix the relative phase to be φ = 0, two shoul-
ders of the reflected spectrum at close resonance (Fig.
3(e)) are higher than that of case 1, since there is larger
phase shift θ induced by the cavity as shown in Fig. 1(e).
When the relative phase is set as φ = π/2, the reflected
spectrum of the antisqueezing component (Fig. 3(f)) is
shown as the V profile, in which the dip in the center
is deeper than that of case 1. This is because the am-
plitude of the reflected field is zero at resonance for the
critically-coupled cavity, as shown in Fig. 1(b).

Case 3. Now we concentrate on the quantum fluctu-
ation reflected from over-coupled optical cavity injected
with the squeezed vacuum light, as shown in Figs. 3(g)
and (h). With the measurement of the squeezed com-
ponent, the lineshape of the reflected spectrum from the
over-coupled optical cavity still maintains the M profile,
but the shoulders become higher than those in cases 1
and 2 and may reach the level of the input antisqueez-
ing component, which is due to the lower loss and larger
phase shift for the over-coupled cavity. There is a phase
shift θ = π/2 induced by the cavity at the two shoulders.
The degree of the squeezing at zero detuning is below the
SNL and reaches the degree of the input squeezing for the
strongly over-coupled cavity. With the measurement of
the antisqueezed component, the noise spectrum presents
a W profile, as shown in Fig. 3(h). The noise level at
zero detuning reaches the level of the input antisqueez-
ing component for the strongly over-coupled cavity. Two
dips then reach the level of the input squeezing compo-
nent.

In conclusion, we investigate the quantum fluctua-
tion spectra of the reflected field for the under-coupled,
critically-coupled, and over-coupled optical cavity in-
jected with squeezed vacuum state. The relationships
between the quantum fluctuation reflected by the optical
cavity and the type of coupling of the optical cavity are
shown. The results indicate that the over-coupled op-
tical cavity has obvious advantage in the manipulation
of quantum fluctuation and can be used in the quan-

tum measurement and quantum information. This work
well complements many previous studies based on bright
quantum optical field[8−11,13] and gives a new perspec-
tive to understand the response of the cavity for the input
quantum optical field. This work can also be applied to
different systems, including the optical cavity[17−22] with
input squeezed vacuum field.
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